在线看一区二区,偷拍大香蕉,www.91蜜桃av,成人黄色激情视频APP

當(dāng)前位置: > 學(xué)術(shù)報(bào)告 > 理科 > 正文

理科

計(jì)算機(jī)科學(xué)學(xué)院七十周年校慶系列學(xué)術(shù)報(bào)告--On Redundant Topological Constraints

發(fā)布時(shí)間:2014-10-09 瀏覽:

講座題目:計(jì)算機(jī)科學(xué)學(xué)院七十周年校慶系列學(xué)術(shù)報(bào)告--On Redundant Topological Constraints

講座人:李三江 教授

講座時(shí)間:15:00

講座日期:2014-9-30

地點(diǎn):長(zhǎng)安校區(qū) 計(jì)算機(jī)科學(xué)學(xué)院學(xué)術(shù)報(bào)告廳

主辦單位:計(jì)算機(jī)科學(xué)學(xué)院

講座內(nèi)容:The Region Connection Calculus (RCC) isa well-known calculus for representing part-whole and topological relations. Itplays an important role in qualitative spatial reasoning, geographical information science, and ontology. The computational complexity of reasoning with RCC has been investigated in depth in the literature. Most of these works focus on the consistency of RCC constraint networks. In this talk, we considerthe important problem of redundant RCC constraints. For a set N of RCC constraints, we say a constraint (x R y) in N is redundant if it can be entailed by the rest of N, i.e., removing (x R y) from N will not change the solution set of N. A prime subnetwork of N is a subset of N which contains no redundant constraints but has the same solution set as N. It is natural to ask how to compute such a prime subnetwork, and when it is unique. In this talk, we show that this problem is in general intractable, but becomes tractable if N isover a tractable subclass S of RCC. If S is a tractable subclass in which weak composition distributes over non-empty intersections, then we can further show that N has a unique prime subnetwork, which is obtained by removing all redundant constraints simultaneously from N. As a byproduct, we identifya sufficient condition for a path-consistent network being minimal.

国产短裙急度色诱视频| 香蕉黄色一区| 国产不卡五月婷婷在线观| 色噜噜日韩精品| 日韩肏屄一区二区| 亚洲一区二区911| 怼贱屄AV白浆| 欧美人成777| Av色性区| 国产欧美精品一区二区日韩少妇| 呦呦呦呦色吧| 色婷婷天堂网| 曰韩无码2026| 亚洲五月中文| 网站一区二区三区四区五区六区| 欧美精品欧美一区二区三区欲| 网站亚洲激情| 91短视频十三区| 日本久久精品按摩按摩| 慰自美女内射高潮。国产| 蜜桃无码女同| 欧美两性精品一区二区三区| 天天干天天AV天天天天干| 精品黄片伊人| 色女一区二区| 2021久久精品免费| 欧美一区有限责任公司| AV男人天堂社区| 亚洲日韩三级综合| 精品特级大毛片精品| 午夜性色一| 亚洲一区二区三区hav无| 久久国产一区密臀| 日本 精品 久久久| 色爱区综合成人网| 18 9 2免费观看网站深夜视频| 国内久久精品| 亚洲成人黄色小电影| 久久综合免费永久入口免费| 大香蕉www大香| 久久国产精品99精品国产|