在线看一区二区,偷拍大香蕉,www.91蜜桃av,成人黄色激情视频APP

當(dāng)前位置: > 學(xué)術(shù)報告 > 理科 > 正文

理科

Fuzzy Discrete Event Systems with Online Supervised Learning Capability

發(fā)布時間:2021-09-15 瀏覽:

報告題目:Fuzzy Discrete Event Systems with Online Supervised Learning Capability

報告人:  Hao Ying

講座日期:2021-9-17

講座時間:9:30

報告地點(diǎn):騰訊會議ID882140799

主辦單位:數(shù)學(xué)與統(tǒng)計學(xué)院

講座人簡介:Professor Hao Ying has published two fuzzy control books, 126 journal papers, and 160 conference papers. He is ranked among top 25% of the 100,000 most-cited authors across all 22 scientific fields (176 subfields) which are selected from nearly 7 million scientists worldwide. He is serving as an Associate Editor or a Member of Editorial Board for 13 international journals, including the IEEE Transactions on Fuzzy Systems and the IEEE Transactions on Systems, Man, and Cybernetics: Systems. He served as a Member of Fellows Committee of both the IEEE Computational Intelligence Society (2020 and 2021) and the IEEE Systems, Man, and Cybernetics Society (2016, 2017, 2020).

講座簡介:

To effectively represent deterministic uncertainties and vagueness as well as human subjective observation and judgment encountered in many real-world problems especially those in medicine, we recently originated a theory of fuzzy discrete event systems (DES). The theory is unique in that it is capable of modeling a class of event-driven systems as fuzzy automata with states and event-invoked state transitions being ambiguous. We introduced fuzzy states and fuzzy event transition and generalized conventional crisp DES to fuzzy DES. The largely graph-based framework of the crisp DES was unsuitable for the expansion and we thus reformulated it using state vectors and event transition matrices which could be extended to fuzzy vectors and matrices by allowing their elements to take values in [0, 1]. We also extended optimal control of DES to fuzzy DES. This novel fuzzy DES theory is consistent with the traditional DES theory, both at conceptual and computation levels, in that the former contains the latter as a special case when the membership grades are either 0 or 1.

We further developed the FDES theory so that it possessed self-learning capability. More specifically, we use stochastic gradient descent to develop online learning algorithms for the fuzzy automata (i.e., learning the event transition matrix from data). We uncover an inherent obstacle in the initial derived algorithms that fundamentally restricts their learning capability owing to dependences of the model parameters to be learned. We develop a novel mechanism to not only overcome the obstacle but also make the learning adaptive. Our final algorithms can (1) learn an event transition matrix based on automaton’s states before and after the occurrence of a fuzzy event, and (2) learn the transition matrix and multi-dimensional Gaussian fuzzy sets yielding automaton’s pre-event states from relevant input (physical) variables and target states. Computer simulation results are presented to show learning performance of the final algorithms.

粉嫩主播在线播放| 加勒比三级久久久| 成年午夜香蕉視頻久久久| 大香蕉午夜免费看| 国内三级片久久久久福利| 婷婷五月中文在线| 日韩一线二线三钱在线视频| 亚洲国产成人无码线路一在线观看 | 欧美成人亚洲成人| 美妻中文精品在线| 中文久久婷婷网| 天天狠天天人人干| 香蕉午夜欧美福利| 日逼C逼鸡巴| 欧美+日韩+一区+久久| 人妻偷乱视频一区二区| 美女肏逼三级视频?| 91日韩欧美在线网址| 日本一级片久久久久| 欧美日韩1图片| 日韩图片欧美一区| 武侠古典男人天堂av| 日韩精品视频射精| 日韩欧美国产精品激情综合婷婷一区 | 嗯嗯啊嗯哦嗯嗯啊视频| 激情射射射| 老牛影视一区二区三区| 丰满人妻视频| 射射射插入视频| av在线丝袜3p不卡| 亚洲wm久久一区| A黄片天堂| 黄色欧美国产精品免费| 91精品字幕| 久久一区二区精品夜夜嗨| 亚洲一区在线偷拍| 午夜国内黄片二三区| 久久久午夜精品风骚少妇影院| 婷婷色hg综合| 色五月麻豆| 日韩二区无码中文字幕|