在线看一区二区,偷拍大香蕉,www.91蜜桃av,成人黄色激情视频APP

當(dāng)前位置: > 學(xué)術(shù)報告 > 文科 > 正文

文科

One-bit Low-tubal-rank Tensor Recovery

發(fā)布時間:2020-11-18 瀏覽:

報告人: 王建軍 教授

講座日期:2020-11-19

講座時間:15:00

報告地點:騰訊會議(768 415 831

主辦單位:數(shù)學(xué)與信息科學(xué)學(xué)院

講座人簡介:

王建軍,西南大學(xué)教授,巴渝學(xué)者特聘教授,重慶市創(chuàng)新創(chuàng)業(yè)領(lǐng)軍人才,重慶工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會副理事長,CSIAM全國大數(shù)據(jù)與人工智能專家委員會委員,美國數(shù)學(xué)評論評論員,曾獲重慶市自然科學(xué)獎勵三等獎。主要研究方向為:高維數(shù)據(jù)建模與挖掘、深度學(xué)習(xí)、壓縮感知與張量恢復(fù)、函數(shù)逼近論等。在神經(jīng)網(wǎng)絡(luò)(深度學(xué)習(xí))逼近復(fù)雜性和高維數(shù)據(jù)稀疏建模等方面有一定的學(xué)術(shù)積累。多次出席國際、國內(nèi)重要學(xué)術(shù)會議,并應(yīng)邀做大會特邀報告22余次。已在IEEE Transactions on Pattern Analysis and Machine Intelligence, Applied and Computational Harmonic Analysis, Inverse Problems, Neural Networks, Signal Processing, IEEE Signal Processing letters, Journal of Computational and Applied Mathematics,ICASSP,中國科學(xué)(A、F), 數(shù)學(xué)學(xué)報, 計算機學(xué)報,電子學(xué)報等知名專業(yè)期刊發(fā)表90余篇學(xué)術(shù)論文。主持國家自然科學(xué)基金5項,教育部科學(xué)技術(shù)重點項目1項,重慶市自然科學(xué)基金1項,主研8項國家自然、社會科學(xué)基金;現(xiàn)主持國家自然科學(xué)基金面上項目2項,參與國家重點基礎(chǔ)研究發(fā)展973計劃1項。

講座簡介:

This talk focuses on the recovery of low-tubal-rank tensors from binary measurements based on tensor-tensor product (or t-product) and tensor Singular Value Decomposition (t-SVD). Two types of recovery models are considered; one is the tensor hard singular tube thresholding and the other is the tensor nuclear-norm minimization. In the case no random dither exists in the measurements, our research shows that the direction of tensor $\mathcal{X} \in \R^{n_1\times n_2\times n_3}$ with tubal rank r can be well approximated from $\Omega((n_1+n_2)n_3r)$ random Gaussian measurements. In the case nonadaptive adaptive dither exists in the measurements, it is proved that both the direction and the magnitude of $\mathcal{X}$ can be simultaneously recovered. As we will see, under the nonadaptive adaptive measurement scheme, the recovery errors of two reconstruction procedures decay at the rate of polynomial of the oversampling factor $\lambda:=m/(n_1+n_2)n_3r$,i.e., $\mathcal{O}(\lambda^{-1/6})$ and $\mathcal{O}(\lambda^{-1/4})$, respectively. In order to obtain faster decay rate, we introduce a recursive strategy and allow the dithers in quantization adaptive to previous measurements for each iterations. Under this quantization scheme, two iterative recovery algorithms are proposed which establish recovery errors decaying at the rate of exponent of the oversampling factor, i.e., $\exp(-\mathcal{O}(\lambda))$. Numerical experiments on both synthetic and real-world data sets are conducted and demonstrate the validity of our theoretical results and the superiority of our algorithms. 

无码人妻精品日韩一区二区三区| 成人综合在线观看视频| 欧美一级专区| 天堂ww在线一区二区| 日韩色色一区二区| 国产久久青青| 精品少妇二区| 在线观看黄色福利| 最新日韩一区二区| 美国精品双飞久久| 亚洲网站页久久| 极品福利AV| 无码在线电影av| 一区 二区 久久| 天天射网站| 欧美精品自拍视频网| 好吊妞视频免费播放| 国产美女第一区| 久久精品区二区三区| 久久亚洲精品美女| 欧美日韩5页| 国产亚洲欧美| 欧美一级肥臀在线看| 一区av免费观看不卡| 亚洲激情 在线| 国产精品久久久久久无码一区免费| 日韩av伦理言情在线播放| 免费黄色小说视屏| 男人女人床上视频二区| 天天躁日日躁网站| 强奸日本熟女| 黄色美女激情视频| 亚洲永久免费无码AV在线观看| 欧美在线不卡二区| 婷婷五月综合色电影撸片区| 久久成人熟女国产| 亚洲欧美色色色色| 亚洲无码区1| 人妻精品一区字幕| 欧美在线日韩不卡| 国产精品四|