報(bào)告人: Ha?m Brezis 院士
講座日期:2019-07-05
講座時(shí)間:10:00
報(bào)告地點(diǎn):長(zhǎng)安校區(qū) 教育博物館主樓學(xué)術(shù)報(bào)告廳
主辦單位:數(shù)學(xué)與信息科學(xué)學(xué)院
講座人簡(jiǎn)介:
Ha?m Brezis院士,主要從事非線性方向和偏微分方程方面的研究。是法國(guó)科學(xué)院院士、歐洲科學(xué)院院士、美國(guó)科學(xué)院外籍院士等8個(gè)國(guó)家院士。獲法國(guó)佩科特大獎(jiǎng),巴黎科學(xué)院卡里埃爾獎(jiǎng),安培大獎(jiǎng)等4項(xiàng)大獎(jiǎng)。至今指導(dǎo)58位博士生,擁有630多位學(xué)術(shù)后裔,其中3位獲得數(shù)學(xué)界最高榮譽(yù)菲爾茲獎(jiǎng)(Fields Medal)獎(jiǎng),至少4位獲院士頭銜。編著專著和書(shū)6部,其中《泛函分析》教材是傳世之經(jīng)典。在國(guó)際數(shù)學(xué)頂尖期刊 Ann Math, Invent. Math., J AMS, Comm. Pure Appl. Math.等發(fā)表學(xué)術(shù)論文224篇。更多研究工作可瀏覽Ha?m Brezis 院士主頁(yè)http://www.math.rutgers.edu/~brezis/.
講座簡(jiǎn)介:
I will discuss two proofs of the celebrated Monge-Kantorovich theorem in discrete Optimal Transport (OT). One of them is extremely elementary, self-contained, and can be understood by beginners. I will then describe an application to Liquid Crystals, which provides an explicit formula for the least energy required to produce a configuration with assigned defects. Next I will present striking connections that we recently discovered with P. Mironescu between OT and least area formulas for the classical Plateau problem.